209 research outputs found

    Cell-cell interactions in synovitis: Interactions between T lymphocytes and synovial cells

    Get PDF
    Mechanisms whereby T lymphocytes contribute to synovial inflammation in rheumatoid arthritis are poorly understood. Here we review data that indicate an important role for cell contact between synovial T cells, adjacent macrophages and fibroblast-like synoviocytes (FLS). Thus, T cells activated by cytokines, endothelial transmigration, extracellular matrix or by auto-antigens can promote cytokine, particularly TNFα, metalloproteinase production by macrophages and FLS through cell-membrane interactions, mediated at least through β-integrins and membrane cytokines. Since soluble factors thus induced may in turn contribute directly to T cell activation, positive feedback loops are likely to be created. These novel pathways represent exciting potential therapeutic targets

    Interleukin-18: a therapeutic target in rheumatoid arthritis?

    Get PDF
    Interleukin 18 (IL-18), a member of the IL-1 superfamily of cytokines has been demonstrated to be an important mediator of both innate and adaptive immune responses. Several reports have implicated its role in the pathogenesis of rheumatoid arthritis (RA). Although biologic therapy is firmly established in the treatment of a number of inflammatory diseases including RA, partial and non-responder patients constitute residual unmet clinical need. The aim of this article is to briefly review the biology of, and experimental approaches to IL-18 neutralisation, together with speculation as to the relative merits of IL-18 as an alternative to existing targets

    IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline

    Get PDF
    Alzheimer’s disease (AD) is a devastating condition with no known effective treatment. AD is characterized by memory loss as well as impaired locomotor ability, reasoning, and judgment. Emerging evidence suggests that the innate immune response plays a major role in the pathogenesis of AD. In AD, the accumulation of β-amyloid (Aβ) in the brain perturbs physiological functions of the brain, including synaptic and neuronal dysfunction, microglial activation, and neuronal loss. Serum levels of soluble ST2 (sST2), a decoy receptor for interleukin (IL)-33, increase in patients with mild cognitive impairment, suggesting that impaired IL-33/ST2 signaling may contribute to the pathogenesis of AD. Therefore, we investigated the potential therapeutic role of IL-33 in AD, using transgenic mouse models. Here we report that IL-33 administration reverses synaptic plasticity impairment and memory deficits in APP/PS1 mice. IL-33 administration reduces soluble Aβ levels and amyloid plaque deposition by promoting the recruitment and Aβ phagocytic activity of microglia; this is mediated by ST2/p38 signaling activation. Furthermore, IL-33 injection modulates the innate immune response by polarizing microglia/macrophages toward an antiinflammatory phenotype and reducing the expression of proinflammatory genes, including IL-1β, IL-6, and NLRP3, in the cortices of APP/PS1 mice. Collectively, our results demonstrate a potential therapeutic role for IL-33 in AD

    Dense and accurate motion and strain estimation in high resolution speckle images using an image-adaptive approach

    Get PDF
    Digital image processing methods represent a viable and well acknowledged alternative to strain gauges and interferometric techniques for determining full-field displacements and strains in materials under stress. This paper presents an image adaptive technique for dense motion and strain estimation using high-resolution speckle images that show the analyzed material in its original and deformed states. The algorithm starts by dividing the speckle image showing the original state into irregular cells taking into consideration both spatial and gradient image information present. Subsequently the Newton-Raphson digital image correlation technique is applied to calculate the corresponding motion for each cell. Adaptive spatial regularization in the form of the Geman-McClure robust spatial estimator is employed to increase the spatial consistency of the motion components of a cell with respect to the components of neighbouring cells. To obtain the final strain information, local least-squares fitting using a linear displacement model is performed on the horizontal and vertical displacement fields. To evaluate the presented image partitioning and strain estimation techniques two numerical and two real experiments are employed. The numerical experiments simulate the deformation of a specimen with constant strain across the surface as well as small rigid-body rotations present while real experiments consist specimens that undergo uniaxial stress. The results indicate very good accuracy of the recovered strains as well as better rotation insensitivity compared to classical techniques

    Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state

    Get PDF
    BACKGROUND: Macrophages sense microorganisms through activation of members of the Toll-like receptor family, which initiate signals linked to transcription of many inflammation associated genes. In this paper we examine whether the signal from Toll-like receptors [TLRs] is sustained for as long as the ligand is present, and whether responses to different TLR agonists are additive. RESULTS: RAW264 macrophage cells were doubly-transfected with reporter genes in which the IL-12p40, ELAM or IL-6 promoter controls firefly luciferase, and the human IL-1β promoter drives renilla luciferase. The resultant stable lines provide robust assays of macrophage activation by TLR stimuli including LPS [TLR4], lipopeptide [TLR2], and bacterial DNA [TLR9], with each promoter demonstrating its own intrinsic characteristics. With each of the promoters, luciferase activity was induced over an 8 hr period, and thereafter reached a new steady state. Elevated expression required the continued presence of agonist. Sustained responses to different classes of agonist were perfectly additive. This pattern was confirmed by measuring inducible cytokine production in the same cells. While homodimerization of TLR4 mediates responses to LPS, TLR2 appears to require heterodimerization with another receptor such as TLR6. Transient expression of constitutively active forms of TLR4 or TLR2 plus TLR6 stimulated IL-12 promoter activity. The effect of LPS, a TLR4 agonist, was additive with that of TLR2/6 but not TLR4, whilst that of lipopeptide, a TLR2 agonist, was additive with TLR4 but not TLR2/6. Actions of bacterial DNA were additive with either TLR4 or TLR2/6. CONCLUSIONS: These findings indicate that maximal activation by any one TLR pathway does not preclude further activation by another, suggesting that common downstream regulatory components are not limiting. Upon exposure to a TLR agonist, macrophages enter a state of sustained activation in which they continuously sense the presence of a microbial challenge

    MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease

    Get PDF
    MicroRNA (miRNA) has the potential for cross-regulation and functional integration of discrete biological processes during complex physiological events. Utilizing the common human condition tendinopathy as a model system to explore the cross-regulation of immediate inflammation and matrix synthesis by miRNA we observed that elevated IL-33 expression is a characteristic of early tendinopathy. Using in vitro tenocyte cultures and in vivo models of tendon damage, we demonstrate that such IL-33 expression plays a pivotal role in the transition from type 1 to type 3 collagen (Col3) synthesis and thus early tendon remodelling. Both IL-33 effector function, via its decoy receptor sST2, and Col3 synthesis are regulated by miRNA29a. Downregulation of miRNA29a in human tenocytes is sufficient to induce an increase in Col3 expression. These data provide a molecular mechanism of miRNA-mediated integration of the early pathophysiologic events that facilitate tissue remodelling in human tendon after injury

    IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice

    Get PDF
    Background<p></p> The initiation and regulation of pulmonary fibrosis are not well understood. IL-33, an important cytokine for respiratory diseases, is overexpressed in the lungs of patients with idiopathic pulmonary fibrosis.<p></p> Objectives<p></p> We aimed to determine the effects and mechanism of IL-33 on the development and severity of pulmonary fibrosis in murine bleomycin-induced fibrosis.<p></p> Methods<p></p> Lung fibrosis was induced by bleomycin in wild-type or Il33r (St2)−/− C57BL/6 mice treated with the recombinant mature form of IL-33 or anti–IL-33 antibody or transferred with type 2 innate lymphoid cells (ILC2s). The development and severity of fibrosis was evaluated based on lung histology, collagen levels, and lavage cytology. Cytokine and chemokine levels were quantified by using quantitative PCR, ELISA, and cytometry.<p></p> Results<p></p> IL-33 is constitutively expressed in lung epithelial cells but is induced in macrophages by bleomycin. Bleomycin enhanced the production of the mature but reduced full-length form of IL-33 in lung tissue. ST2 deficiency, anti–IL-33 antibody treatment, or alveolar macrophage depletion attenuated and exogenous IL-33 or adoptive transfer of ILC2s enhanced bleomycin-induced lung inflammation and fibrosis. These pathologic changes were accompanied, respectively, by reduced or increased IL-33, IL-13, TGF-β1, and inflammatory chemokine production in the lung. Furthermore, IL-33 polarized M2 macrophages to produce IL-13 and TGF-β1 and induced the expansion of ILC2s to produce IL-13 in vitro and in vivo.<p></p> Conclusions<p></p> IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrogenic cytokine production in an ST2- and macrophage-dependent manner

    Modelling upper respiratory viral load dynamics of SARS-CoV-2

    Get PDF
    Relationships between viral load, severity of illness, and transmissibility of virus, are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response, and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over 5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age, sex, or severity of illness, and these variables were not associated with the modelled early or late phases of immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured immune responses associated with control of viral load. Neutralizing antibody correlated strongly with modelled immune-mediated control of viral load amongst subjects who produced neutralizing antibody. Our models can be used to identify host and viral factors which control URT viral load dynamics, informing future treatment and transmission blocking interventions

    IL-33 reduces the development of atherosclerosis

    Get PDF
    Atherosclerosis is a chronic inflammatory disease of the vasculature commonly leading to myocardial infarction and stroke. We show that IL-33, which is a novel IL-1–like cytokine that signals via ST2, can reduce atherosclerosis development in ApoE−/− mice on a high-fat diet. IL-33 and ST2 are present in the normal and atherosclerotic vasculature of mice and humans. Although control PBS-treated mice developed severe and inflamed atherosclerotic plaques in the aortic sinus, lesion development was profoundly reduced in IL-33–treated animals. IL-33 also markedly increased levels of IL-4, -5, and -13, but decreased levels of IFNγ in serum and lymph node cells. IL-33 treatment also elevated levels of total serum IgA, IgE, and IgG1, but decreased IgG2a, which is consistent with a Th1-to-Th2 switch. IL-33–treated mice also produced significantly elevated antioxidized low-density lipoprotein (ox-LDL) antibodies. Conversely, mice treated with soluble ST2, a decoy receptor that neutralizes IL-33, developed significantly larger atherosclerotic plaques in the aortic sinus of the ApoE−/− mice compared with control IgG-treated mice. Furthermore, coadministration of an anti–IL-5 mAb with IL-33 prevented the reduction in plaque size and reduced the amount of ox-LDL antibodies induced by IL-33. In conclusion, IL-33 may play a protective role in the development of atherosclerosis via the induction of IL-5 and ox-LDL antibodies
    corecore